Понятие бинарного отношения на множестве. Бинарные отношения

💖 Нравится? Поделись с друзьями ссылкой

Бинарные отношения.

Пусть A и B – произвольные множества. Возьмем по одному элементу из каждого множества, a из A, b из B и запишем их так: (сначала элемент первого множества, затем элемент второго множества – т.е. нам важен порядок, в котором берутся элементы). Такой объект будем называть упорядоченной парой . Равными будем считать только те пары, у которых элементы с одинаковыми номерами равны. = , если a = c и b = d. Очевидно, что если a ≠ b, то .

Декартовым произведением произвольных множеств A и B (обозначается: AB) называется множество, состоящее из всех возможных упорядоченных пар, первый элемент которых принадлежит A, а второй принадлежит B. По определению: AB = { | aA и bB}. Очевидно, что если A≠B, то AB ≠ BA. Декартово произведение множества A само на себя n раз называется декартовой степенью A (обозначается: A n).

Пример 5. Пусть A = {x, y} и B = {1, 2, 3}.

AB = {, , , , , }.

BA = {<1, x>, <2, x>, <3, x>, <1, y>, <2, y>, <3, y>}.

AA = A 2 = {, , , }.

BB = B 2 = {<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <2, 3>, <3, 1>, <3, 2>, <3, 3>}.

Бинарным отношением на множестве M называется множество некоторых упорядоченных пар элементов множества M. Если r – бинарное отношение и пара принадлежит этому отношению, то пишут: r или x r y. Очевидно, r Í M 2 .

Пример 6. Множество {<1, 2>, <2, 2>, <3, 4>, <5, 2>, <2, 4>} является бинарным отношением на множестве {1, 2, 3, 4, 5}.

Пример 7. Отношение ³ на множестве целых чисел является бинарным отношением. Это бесконечное множество упорядоченных пар вида , где x ³ y, x и y – целые числа. Этому отношению принадлежат, например, пары <5, 3>, <2, 2>, <324, -23> и не принадлежат пары <5, 7>, <-3, 2>.

Пример 8. Отношение равенства на множестве A является бинарным отношением: I A = { | x Î A}. I A называется диагональю множества A.

Поскольку бинарные отношения являются множествами, то к ним применимы операции объединения, пересечения, дополнения и разности.

Областью определения бинарного отношения r называется множество D(r) = { x | существует такое y, что xry }. Областью значений бинарного отношения r называется множество R(r) = { y | существует такое x, что xry }.

Отношением, обратным к бинарному отношению r Í M 2 , называется бинарное отношение r -1 = { | Î r}. Очевидно, что D(r ‑1) = R(r), R(r ‑1) = D(r), r ‑ 1 Í M 2 .

Композицией бинарных отношений r 1 и r 2 , заданных на множестве M, называется бинарное отношение r 2 o r 1 = { | существует y такое, что Î r 1 и Í r 2 }. Очевидно, что r 2 o r 1 Í M 2 .

Пример 9. Пусть бинарное отношение r задано на множестве M = {a, b, c, d}, r = {, , , }. Тогда D(r) = {a, c}, R(r) = {b, c, d}, r ‑1 = {, , , }, r o r = {, , , }, r ‑1 o r = {, , , }, r o r ‑1 = {, , , , , , }.

Пусть r – бинарное отношение на множестве M. Отношение r называется рефлексивным , если x r x для любого x Î M. Отношение r называется симметричным , если вместе с каждой парой оно содержит и пару . Отношение r называется транзитивным , если из того, что x r y и y r z следует, что x r z. Отношение r называется антисимметричным , если оно не содержит одновременно пары и различных элементов x ¹ y множества M.

Укажем критерии выполнения этих свойств.

Бинарное отношение r на множестве M рефлексивно тогда и только тогда, когда I M Í r.

Бинарное отношение r симметрично тогда и только тогда, когда r = r ‑1 .

Бинарное отношение r на множестве M антисимметрично тогда и только тогда, когда r Ç r ‑1 = I M .

Бинарное отношение r транзитивно тогда и только тогда, когда r o r Í r.

Пример 10. Отношение из примера 6 является антисимметричным, но не является симметричным, рефлексивным и транзитивным. Отношение из примера 7 является рефлексивным, антисимметричным и транзитивным, но не является симметричным. Отношение I A обладает всеми четырьмя рассматриваемыми свойствами. Отношения r ‑1 o r и r o r ‑1 являются симметричными, транзитивными, но не являются антисимметричными и рефлексивными.

Отношением эквивалентности на множестве M называется транзитивное, симметричное и рефлексивное на М бинарное отношение.

Отношением частичного порядка на множестве М называется транзитивное, антисимметричное и рефлексивное на М бинарное отношение r.

Пример 11. Отношение из примера 7 является отношением частичного порядка. Отношение I A является отношением эквивалентности и частичного порядка. Отношение параллельности на множестве прямых является отношением эквивалентности.

Рассмотрим отношение «уважать», определенное на множестве всех людей %%M%%. Для полной информации о том, кто кого уважает, составим следующее множество %%R%%. Переберем все пары %%(a, b)%%, где %%a, b%% пробегают множество всех людей. Если %%a%% уважает %%b%%, то пару %%(a,b)%% отнесем к множеству %%R%%, иначе — нет.

Этот список полностью отражает отношение «уважать». Если нужно узнать, уважает ли человек %%a%% человека %%b%%, то просмотрим множество %%R%%. Если пара %%(a, b) \in R%%, то заключаем, что %%a%% уважает %%b%%. В случае %%(a,b) \notin R%% — %%a%% не уважает %%b%%.

Определение

Бинарным отношением , определенным на множестве %%M%%, называется произвольное подмножество %%R%% из декартового произведения %%M^2%%.

Пример

Рассмотрим отношение больше на множестве %%M = \{1, 2\}%%. Тогда

$$ M^2 = \big\{(1, 1), (1,2), (2,1), (2,2)\big\} $$ Из него выбирем все пары %%(a,b)%%, где %%a > b%%. Получим $$ R = \big\{(2,1)\big\} $$

Виды бинарных отношений

Рефлексивное бинарное отношение

рефлексивным , если для любого элемента %%a%% из %%M%%, выполняется условие %%a~R~a%%. $$ \begin{array}{l} \forall a\in M~~a~R~a \text{ или}\\ \forall a\in M~~(a,a) \in R. \end{array} $$

Примеры

  1. Рассмотрим отношение больше больше рефлексивным? Если да, то каждое число является больше самого себя, что неверно. Поэтому отношение больше не рефлексивно.
  2. Рассмотрим отношение равно на множестве действительных чисел. Оно является рефлексивным , так как каждое действительное число равно самому себе.

Симметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется симметричным , если для любых двух элементов %%a, b%% из %%M%%, из условия %%a~R~b%% следует условие %%b~R~a%%.

$$ \begin{array}{l} \forall a,b\in M~~a~R~b \rightarrow b~R~a \text{ или}\\ \forall a,b\in M~~(a,b) \in R \rightarrow (b,a) \in R. \end{array} $$

Примеры

  1. Рассмотрим отношение больше на множестве действительных чисел. Является ли отношение больше симметричным? Оно не является симметричным, так как если %%a > b%%, то условие %%b > a%% не выполняется. Поэтому отношение больше не симметрично.
  2. Пусть %%R%% — отношение, определенное на множестве %%M = \{a,b,c\}%%. При этом %%R = \big\{ (a,b), (b,c), (a,a), (b,a), (c,b)\big\}%%. Для этого отношения имеем %%\forall x,y \in M ~~ (x,y) \in R \rightarrow (y,x) \in R%%. По определению %%R%% симметрично.

Транзитивное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется транзитивным , если для любых элементов %%a, b, c%% из %%M%%, из условий %%a~R~b%% и %%b~R~c%% следует условие %%a~R~c%%.

$$ \begin{array}{l} \forall a,b,c\in M~~a~R~b \land b~R~c \rightarrow a~R~c \text{ или}\\ \forall a,b,c\in M~~(a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R. \end{array} $$

Пример

Рассмотрим отношение больше на множестве дейтсвительных чисел. Оно является транзитивным , так как для любых элементов выполняется условние %%\forall a,b,c\in M~~a > b \land b > c \rightarrow a > c%%. Так, например, подставив вместо %%a, b%% и %%c%% числа %%2, 1%% и %%0%% соответственно, получим: если %%2 > 1%% и %%1 > 0%%, то %%2 > 0%% — верное утверждение (вспомните импликацию, из истины следует истина).

Антисимметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется антисимметричным , если для любых элементов %%a, b%% из %%M%%, из условий %%a~R~b%% и %%b~R~a%% следует условие %%a = b%%.

$$ \begin{array}{l} \forall a,b,c\in M~~a~R~b \land b~R~a \rightarrow a = b \text{ или}\\ \forall a,b\in M~~(a,b) \in R \land (b,a) \in R \rightarrow a = b. \end{array} $$

Пример

Отношение больше или равно на множестве действительных чисел антисимметрично . Действительно, если %%a \geq b%% и %%b \geq a%%, %%a = b%%.

Эквивалентное бинарное отношение

эквивалентности , если оно рефлексивно , симметрично и транзитивно .

Нетрудно проверить, что отношение параллельности на множестве прямых плоскости является отношением эквивалентности.

Отношение частичного порядка

Бинарное отношение %%R%% на множестве %%M%% называется отношением частичного порядка , если оно рефлексивно , антисимметрично и транзитивно .

Отношение больше или равно на множестве действительных чисел является отношением частичного порядка.

Построение отрицаний

Пусть %%R%% — бинарное отношение на множестве %%M%%, и %%P%% — одно из следующих условий:

  • отношение %%R%% рефлексивно,
  • отношение %%R%% симметрично,
  • отношение %%R%% транзитивно,
  • отношение %%R%% антисимметрично.

Построим для каждого из них отрицание выполнения условия %%P%%.

Отрицание рефлексивности

По определению %%R%% рефлексивно, если каждый элемент множества %%M%% находится в отношении %%R%% к самому себе, то есть %%\forall a \in M~~a~R~a%%. Тогда рассмотрим отрицание рефлексивности как истинное высказывание %%\overline{\forall a \in M~~a~R~a}%%. Используем равносильность %%\overline{\forall x P(x)} \equiv \exists x \overline {P(x)}%%. В нашем случае получаем %%\forall a \in M~~a~R~a \equiv \exists a\in M~~a~\not\text{R }~a%%, что и нужно.

Аналогично получаем и остальные отрицания. В итоге получаем следующие утверждения:

    %%R%% не рефлексивно тогда и только тогда, когда

    $$ \exists a \in M~~a~\not R~a $$

    %%R%% не симметрично тогда и только тогда, когда

    $$ \exists a, b \in M~~ a~R~b \land b~\not R~a $$

    %%R%% не транзитивно тогда и только тогда, когда

    $$ \exists a, b, c \in M a~R~b \land b~R~c \land a~\not R~c $$

    %%R%% не антисимметрично тогда и только тогда, когда

    $$ \exists a, b \in M~~ a~R~b \land b~R~a \land a \neq b. $$

Лекция 3.

п.3. Отношения на множествах. Свойства бинарных отношений.

3.1. Бинарные отношения .

Когда говорят о родстве двух людей, например, Сергей и Анна, то подразумевают, что есть некая семья, к членам которой они относятся. Упорядоченная пара (Сергей, Анна) отличается от других упорядоченных пар людей тем, что между Сергеем и Анной есть некое родство (кузина, отец и т. д.).

В математике среди всех упорядоченных пар прямого произведения двух множеств A и B (A ´B ) тоже выделяются «особые» пары в связи с тем, что между их компонентами есть некоторые «родственные» отношения, которых нет у других. В качестве примера рассмотрим множество S студентов какого-нибудь университета и множество K читаемых там курсов. В прямом произведении S ´K можно выделить большое подмножество упорядоченных пар (s , k ), обладающих свойством: студент s слушает курс k . Построенное подмножество отражает отношение «… слушает …», естественно возникающее между множествами студентов и курсов.

Для строгого математического описания любых связей между элементами двух множеств введем понятие бинарного отношения.

Определение 3.1. Бинарным (или двухместным ) отношением r между множествами A и B называется произвольное подмножество A ´B , т. е.

В частности, если A= B (то есть rÍA 2), то говорят, что r есть отношение на множестве A.

Элементы a и b называются компонентами (или координатами ) отношения r.

Замечание. Договоримся, что для обозначения отношений между элементами множеств использовать греческий алфавит : r, t, j, s, w и т. д.

Определение 3.2. Областью определения D r={a | $ b , что a rb } (левая часть). Областью значений бинарного отношения r называется множество R r={b | $ a , что a rb } (правая часть).

Пример 3. 1. Пусть даны два множества A ={1; 3; 5; 7} и B ={2; 4; 6}. Отношение зададим следующим образом t={(x ; y A ´B | x+ y =9}. Это отношение будет состоять из следующих пар (3; 6), (5; 4) и (7; 2), которые можно записать в виде t={(3; 6), (5; 4), (7;2)}. В данном примере D t={3; 5; 7} и R t= B ={2; 4; 6}.

Пример 3. 2. Отношение равенства на множестве действительных чисел есть множество r={(x ; y ) | x и y – действительные числа и x равно y }. Для этого отношения существует специальное обозначение «=». Область определения совпадает с областью значений и является множеством действительных чисел, D r= R r.

Пример 3. 3. Пусть A – множество товаров в магазине, а B – множество действительных чисел. Тогда j={(x ; y A ´B | y – цена x } – отношение множеств A и B .

Если обратить внимание на пример 3.1., то можно заметить, что данное отношение было задано сначала в виде t={(x ; y A ´B | x+ y =9}, а потом записано в виде t={(3; 6), (5;4), (7;2)}. Это говорит о том, что отношения на множествах (или одном множестве) можно задавать различными способами. Рассмотрим способы задания бинарных отношений.

Способы задания отношений:

1) с помощью подходящего предиката;

2) множество упорядоченных пар;

3) в графической форме: пусть A и B – два конечных множества и r – бинарное отношение между ними. Элементы этих множеств изображаем точками на плоскости. Для каждой упорядоченной пары отношения r рисуют стрелку, соединяющую точки, представляющие компоненты пары. Такой объект называется ориентированным графом или орграфом , точки же, изображающие элементы множеств, принято называть вершинами графа .

4) в виде матрицы: пусть A ={a 1, a 2, …, an } и B ={b 1, b 2, …, bm }, r – отношение на A ´B . Матричным представлением r называется матрица M =[mij ] размера n ´m , определенная соотношениями

.

Кстати, матричное представление является представлением отношения в компьютере.

Пример 3. 4. Пусть даны два множества A ={1; 3; 5; 7}и B ={2; 4; 6}. Отношение задано следующим образом t={(x ; y ) | x+ y =9}. Задать данное отношение как множество упорядоченных пар, орграфом, в виде матрицы.

Решение. 1) t={(3; 6), (5; 4), (7; 2)} - есть задание отношения как множества упорядоченных пар;

2) соответствующий ориентированный граф показан на рисунке.

https://pandia.ru/text/78/250/images/image004_92.gif" width="125" height="117">. ,

Пример 3. 5 . Еще в качестве примера можно рассмотреть предложенную Дж. фон Нейманом (1903 – 1957) блок-схему ЭВМ последовательного действия, которая состоит из множества устройств M :

,

где a – устройство ввода, b – арифметическое устройство (процессор), c – устройство управления, d – запоминающее устройство, e – устройство вывода.

Рассмотрим информационный обмен между устройствами mi и mj , которые находятся в отношении r, если из устройства mi поступает информация в устройство mj .

Это бинарное отношение можно задать перечислением всех его 14 упорядоченных пар элементов:

Соответствующий орграф, задающий это бинарное отношение, представлен на рисунке:


Матричное представление этого бинарного отношения имеет вид:

. ,

Для бинарных отношений обычным образом определены теоретико-множественные операции: объединение, пересечение и т. д.

Введем обобщенное понятие отношения.

Определение 3.3. n-местное (n -арное ) отношение r – это подмножество прямого произведения n множеств, то есть множество упорядоченных наборов (кортежей )

A 1´…´An ={(a 1, …, an )| a A 1Ù … Ùan ÎAn }

Многоместные отношения удобно задавать с помощью реляционных таблиц . Такое задание соответствует перечислению множества n -к отношения r. Реляционные таблицы широко используются в компьютерной практике в реляционных базах данных . Заметим, что реляционные таблицы нашли применение в повседневной практике. Всевозможные производственные, финансовые, научные и другие отчеты часто имеют форму реляционных таблиц.

Слово «реляционная » происходит от латинского слова relation , которое в переводе на русский язык означает «отношение». Поэтому в литературе для обозначения отношения используют букву R (латинскую) или r (греческую).

Определение 3.4. Пусть rÍA ´B есть отношение на A ´B. Тогда отношение r-1 называется обратным отношением к данному отношению r на A ´B , которое определяется следующим образом:

r-1={(b , a ) | (a , b )Îr}.

Определение 3.5. Пусть r ÍA ´B есть отношение на A ´B, а s ÍB ´C – отношение на B ´C. Композицией отношений s и r называется отношение t ÍA ´C ,которое определяется следующим образом:

t=s◦r= {(a , c )| $ b Î B, что (a , b )Îr и (b , c )Îs}.

Пример 3. 6 . Пусть , и C ={, !, d, à}. И пусть отношение r на A ´B и отношение s на B ´C заданы в виде:

r={(1, x ), (1, y ), (3, x )};

s={(x ,), (x , !), (y , d), (y , à)}.

Найти r-1 и s◦r, r◦s.

Решение. 1) По определению r-1={(x , 1), (y , 1), (x , 3)};

2) Используя определение композиции двух отношений, получаем

s◦r={(1,), (1, !), (1, d), (1, à), (3,), (3, !)},

поскольку из (1, x )Îr и (x ,)Îs следует (1,)Îs◦r;

из (1, x )Îr и (x , !)Îs следует (1, !)Îs◦r;

из (1, y )Îr и (y , d)Îs следует (1, d)Îs◦r;

из (3, x )Îr и (x , !)Îs следует (3, !)Îs◦r.

Теорема 3.1. Для любых бинарных отношений выполняются следующие свойства:

2) ;

3) - ассоциативность композиции.

Доказательство. Свойство 1 очевидно.

Докажем свойство 2. Для доказательства второго свойства покажем, что множества, записанные в левой и правой частях равенства, состоят из одних и тех же элементов. Пусть (a ; b ) Î (s◦r)-1 Û (b ; a ) Î s◦r Û $ c такое, что (b ; c ) Î r и (c ; a ) Î s Û $ c такое, что (c ; b ) Î r-1 и (a ; c ) Î s-1 Û (a ; b ) Î r -1◦s -1.

Свойство 3 доказать самостоятельно.

3.2. Свойства бинарных отношений .

Рассмотрим специальные свойства бинарных отношений на множестве A .

Свойства бинарных отношений.

1. Отношение r на A ´A называется рефлексивным , если (a ,a ) принадлежит r для всех a из A .

2. Отношение r называется антирефлексивным , если из (a ,b )Îr следует a ¹b .

3. Отношение r симметрично , если для a и b , принадлежащих A , из (a ,b )Îr следует, что (b ,a )Îr.

4. Отношение r называется антисимметричным , если для a и b из A , из принадлежности (a ,b ) и (b ,a ) отношению r следует, что a =b .

5. Отношение r транзитивно , если для a , b и c из A из того, что (a ,b )Îr и (b ,c )Îr, следует, что (a ,c )Îr.

Пример 3. 7. Пусть A ={1; 2; 3; 4; 5; 6}. На этом множестве задано отношение rÍA 2, которое имеет вид: r={(1, 1), (2, 2), (3, 3), (4; 4), (5; 5), (6; 6), (1; 2), (1; 4), (2; 1), (2;4), (3;5), (5; 3), (4; 1), (4; 2)}. Какими свойствами обладает данное отношение?

Решение. 1) Это отношение рефлексивно, так как для каждого a ÎA , (a ; a )Îr.

2) Отношение не является антирефлексивным, так как не выполняется условие этого свойства. Например, (2, 2)Îr, но отсюда не следует, что 2¹2.

3) Рассмотрим все возможные случаи, показав, что отношение r является симметричным:

(a , b )Îr

(b , a )

(b , a )Îr?

4) Данное отношение не является антисимметричным, поскольку (1, 2)Îr и (2,1)Îr, но отсюда не следует, что 1=2.

5) Можно показать, что отношение r транзитивно, используя метод прямого перебора.

(a , b )Îr

(b , c )Îr

(a , c )

(a , c )Îr?

Как по матрице представления

определить свойства бинарного отношения

1. Рефлексивность: на главной диагонали стоят все единицы, звездочками обозначены нули или единицы.

.

2. Антирефлексивность: на главной диагонали все нули.

3. Симметричность: если .

4. Антисимметричность: все элементы вне главной диагонали равны нулю; на главной диагонали тоже могут быть нули.

.

Операция «*» выполняется по следующему правилу: , где , .

5. Транзитивность: если . Операция «◦» выполняется по обычному правилу умножения, при этом надо учитывать: .

3.3 Отношение эквивалентности. Отношение частичного порядка.

Отношение эквивалентности является формализацией такой ситуации, когда говорят о сходстве (одинаковости) двух элементов множества.

Определение 3.6. Отношение r на A есть отношение эквивалентности , если оно рефлексивно, симметрично и транзитивно. Отношение эквивалентности a rb часто обозначается: a ~ b .

Пример 3. 8 . Отношение равенства на множестве целых чисел есть отношение эквивалентности.

Пример 3. 9 . Отношение «одного роста» есть отношение эквивалентности на множестве людей X .

Пример 3. 1 0 . Пусть ¢ - множество целых чисел. Назовем два числа x и y из ¢ сравнимыми по модулю m (m Î¥) и запишем , если равны остатки этих чисел от деления их на m , т. е. разность (x -y ) делится на m .

Отношение «сравнимых по модулю m целых чисел» есть отношение эквивалентности на множестве целых числе ¢. В самом деле:

это отношение рефлексивно, т. к. для "x ΢ имеем x -x =0, и, следовательно, оно делится на m ;

это отношение симметрично, т. к. если (x -y ) делится на m , то и (y -x ) тоже делится на m ;

это отношение транзитивно, т. к. если (x -y ) делится на m , то для некоторого целого t 1 имеем https://pandia.ru/text/78/250/images/image025_23.gif" width="73" height="24 src=">, отсюда , т. е. (x -z ) делится на m .

Определение 3.7. Отношение r на A есть отношение частичного порядка , если оно рефлексивно, антисимметрично и транзитивно и обозначается символом °.

Частичный порядок важен в тех ситуациях, когда мы хотим как-то охарактеризовать старшинство. Иными словами, решить при каких условиях считать, что один элемент множества превосходит другой.

Пример 3. 11 . Отношение x £y на множестве действительных чисел есть отношение частичного порядка. ,

Пример 3. 1 2 . Во множестве подмножеств некоторого универсального множества U отношение A ÍB есть отношение частичного порядка.

Пример 3. 1 3 . Схема организации подчинения в учреждении есть отношение частичного порядка на множестве должностей.

Прообразом отношения частичного порядка является интуитивное понятие отношения предпочтения (предшествования). Отношение предпочтения выделяет класс задач, которые можно объединить, как задача о проблеме выбора наилучшего объекта .

Формулировка задачи: пусть имеется совокупность объектов A и требуется сравнить их по предпочтительности, т. е. задать отношение предпочтения на множестве A и определить наилучшие объекты.

Отношение предпочтения P , которое можно определить как «aPb , a , b ÎA Û объект a не менее предпочтителен, чем объект b » является по смыслу рефлексивным и антисимметричным (каждый объект не хуже самого себя, и, если объект a не хуже b и b не хуже a , то они одинаковы по предпочтительности). Естественно считать, что отношение P транзитивно (хотя в случае, когда, например, предпочтения обсуждаются группой лиц с противоположными интересами, это свойство может быть нарушено), т. е. P – отношение частичного порядка.

Один из возможных способов решения задачи сравнения объектов по предпочтительности – ранжирование , т. е. упорядочение объектов в соответствии с убыванием их предпочтительности или равноценности. В результате ранжирования мы выделяем «наилучшие» или «наихудшие» с точки зрения отношения предпочтения объекты.

Области применения задачи о проблеме выбора наилучшего объекта: теория принятия решений, прикладная математика, техника, экономика, социология, психология.

Пусть A - множество. Если задано некоторое подмножество его декартового квадрата, другими словами, задано некоторое подмножество упорядоченных пар , где , то говорят, что на множестве A задано бинарное отношение R . Пишут или .В качестве примеров бинарных отношений на числовых множествах можно рассмотреть хорошо известные из арифметики отношения: ,=”,<”,£”,>”,³”.

Бинарное отношение называется:

Рефлексивным, если для любого

Иррефлексивным, если для любого ;

Симметричным, если из следует ;

Антисимметричным, если и следует a=b ;

Транзитивным, если из и следует ;

Отношение,=” рефлексивно, симметрично и транзитивное, отношения,<” и,>” транзитивны и иррефлексивны, отношения,£” и,³”. рефлексивны, антисимметричны и транзитивны. Последние свойства выбираются в качестве определяющих для отношения частичного порядка на множестве A .

Определение. Бинарное отношение R на множестве A называется отношением частичного порядка, если оно рефлексивно, антисимметрично и транзитивно,

Если , то будем считать элемент a предшествующим элементу b и записывать отношение aRb в виде . Если для любых двух элементов имеет место хотя бы одно из отношений или , то частичный порядок называется полным или линейным порядком.

Примером частичного порядка является система множеств, упорядоченных по включению: . Числовые множества с обычным отношением, £” дают примеры линейных порядков.

Пусть £ > - частично упорядоченное множество. Элемент называется минимальным, если из следует . Минимальных элементов может быть больше одного. Элемент называется наименьшим, если для любого . Если в A имеется наименьший элемент, то он единственен. Аналогично определяются максимальный и наибольший элемент.

Обобщением понятия равенства является отношение эквивалентности.

Определение . Бинарное отношение R на множестве A называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Отношение эквивалентности разбивает множество A на непересекающиеся подмножества, называемые классами эквивалентности. Если в качестве A рассмотреть множество людей, проживающих в домах некоторого города, то отношение проживания в одном доме будет отношением эквивалентности. Более математическим примером является отношение сравнения по модулю n в множестве целых чисел Z : , если делится на n . При этом Z разбивается на классы , характеризуемые остатками от деления на n . Более общим примером является эквивалентность элементов группы G по подгруппе H : если . Классами эквивалентности здесь являются правые смежные классы по подгруппе H .

Широкий спектр отношений на примере множеств сопровождается большим числом понятий, начиная с их определений и заканчивая аналитическим разбором парадоксов. Разнообразие обсуждаемого в статье понятия на множестве бесконечно. Хотя, когда говорят про двойственные типы, под этим подразумеваются бинарные отношения между несколькими величинами. А также между объектами или высказываниями.

Как правило, бинарные отношения обозначаются символом R, то есть, если xRx для любого значения x из поля R, такое свойство называют рефлексивным, в котором x и х - это принятые объекты мысли, а R служит знаком о том или ином виде взаимосвязи между индивидами. В то же время если выражать xRy® или yRx, то это говорит о состоянии симметрии, где ® - знак импликации, похожий на союз «если..., то...". И, наконец, расшифровка надписи (xRy Ùy Rz) ®xRz расскажет о транзитивной взаимосвязи, причём знак Ù - это конъюнкция.

Бинарное отношение, которое бывает одновременно рефлексивным, симметричным и транзитивным, именуется взаимосвязью эквивалентности. Отношение f - это функция, и из <х, у> Î f и <х, z> Î f вытекает равность y=z. Простая бинарная функция может быть легко применима к двум несложным аргументам, расположенным в определённом порядке, и лишь в данном случае она предоставляет ей значение, направленное этим двум выражениям, взятым в конкретном случае.

Следует говорить, что f отображает x на y,

если f служит функцией с зоной определения x и зоной значений y. Однако когда f экстраполирует x на y, и y Í z, то это приводит к тому, что f показывает x в z. Простой пример: если f(x)=2x справедливо для достоверно любого целого х, то говорят, что f отображает знаковое множество всех известных целых чисел во множество тех же целых, но на этот раз чётных чисел. Как уже упоминалось выше, бинарные отношения, которые одновременно рефлексивны, симметричны и транзитивны, являются взаимосвязями эквивалентности.

Исходя из вышесказанного, взаимосвязи эквивалентности бинарных отношений определяются свойствами:

  • рефлексивности - соотношение (M ~ N);
  • симметричности - если равность M ~ N, то будет N ~ M;
  • транзитивности - если две равности M ~ N и N ~ P, то в результате M ~ P.

Рассмотрим заявленные свойства бинарных отношений подробнее. Рефлексивность - это одна из характеристик некоторых связей, где каждый элемент исследуемого множества пребывает в данной равности сам себе. Например, между числами а=с и а³ с - рефлексивные связи, поскольку всегда а=а, с=с, а³ а, с³ с. В то же время отношение неравенства а>с - антирефлексивно из-за невозможности существования неравенства а>а. Аксиома этого свойства кодируется знаками: aRc® aRa Ù cRc , здесь символ ® означает слово "влечёт" (или "имплицирует"), а знак Ù - выступает союзом "и" (или конъюнкцией). Из этого утверждения следует, что в случае истинности суждения aRc также истинны и выражения aRa и cRc.

Симметричность влечёт за собой наличие отношения и в том случае, если мыслительные объекты поменять местами, то есть при симметричной взаимосвязи перестановка объектов не приводит к трансформации вида "бинарные отношения". Например, связь равенства а=с симметрична по причине эквивалентности отношения с=а; также одинаково и суждение а¹с, так как оно отвечает связи с¹а.

Транзитивное множество - это такое свойство, при котором выполняется следующее требование: у Î х, z Î y ® z Î x, где ® выступает знаком, заменяющим слова: "если..., то...". Вербально читается формула таким образом: «Если у зависит от х, z принадлежит у, то z также зависит от х".

Рассказать друзьям